INTRODUCTION

For many years, breast cancer has been among the most prevalent cancers and the most causative agent of mortality among women. In many countries, breast cancer is the most reason of women’s death at the ages of 35-45.\(^1,2\) In the US, approximately 180,000 new cases of invasive breast cancer and 25,000 carcinoma in situ are diagnosed annually. About 30,000 to 40,000 of women in the US die from breast cancer each year.\(^3\) The annual incidence rate of breast cancer in Iran is 22.4 per 100,000 people, which is one fifth of mentioned density of the US.\(^4\) The risk factors in breast cancer are including gender, age, the occurrence of menstruation at low ages, lack of previous pregnancy or delivery, having a family or self-history of breast cancer and atypical epithelial proliferation, exposure to radiation, and finally diet habits.\(^1\) Imaging techniques including sonography, mammography, Doppler sonography, MRI and elastography are used to study breast-related diseases. However, the gold standard methods for studying breast masses are biopsy and pathological diagnosis;\(^5\) nowadays the biopsy is used less frequently as the first step of diagnosis. Mammography is the most proper method for early diagnosis of breast cancer. However, mammography has high sensitivity; its specificity is nearly low. As a result, a high percent of lesions...
determined as malignant by mammography, is considered as benign via biopsy. In addition, the interpretation of mammography results is time-consuming.\(^6\) Sonography is an easy and inexpensive method which has high reproducibility and is agreeable for patients. The significance of mammography is the diagnosis of cystic and tumor lesions in breast. Different studies have shown that sonography has nearly high sensitivity in determining of benign and malignant masses of breast;\(^7-10\) however some reports have refused such a sensitivity rate.\(^3\) Due to patient's inclination to sonography, and the mammography problems in diagnosing of benign and malignant masses, needing much time to interpret, lack of sufficient studies and existence of inconsistent views on its capability compared to mammography in our country, this study was carried out. The aim of this study was to determine the diagnosis value of sonography for differentiating the benign from malignant breast masses of patients in Mo' tazed Hospital of Kermanshah University of Medical Sciences in 2008.

Material and Methods

The sample size was determined using the formula of qualitative methods on 73 patients having clinical masses. The studied patients were chosen from women with presumed breast masses, referred to Breast Clinic of Mo'tazed Hospital. The breast masses of the patients were first examined by gynecologists. When masses were diagnosed using a Honda 2000 sonography set, the malignancy or benignity of masses were investigated. If the masses had 3 out of the 7 criteria of malignant masses such as depth, variability, irregularity in echogenic halo, hypogenesity with low-level marked and non-uniformity, the masses were recognized as malignant masses. Tissue samples or biopsies were obtained, and transferred to the Lab for pathological studies. The pathological reports were managed as gold-standard. The examined variables were age, marital status, number of children, breast-feeding, mass location, pathology and sonography reports (regarding benignity or malignancy of masses). Finally, the yielded data were analyzed utilizing frequency, percentage, one and two-dimensional tables; the criteria of diagnostic value included sensitivity, characteristic, the positive and negative indicative values, and accuracy rate of distinguishing the malignant masses.

Results

(Tab. 1) shows the distribution of breast masses types by sonography based on breast-feeding of the studied patients. Whereas sonography confirmed the 68.5% of masses as benign, pathology reports indicated 63% of the cases as benign masses. Furthermore, sonography had 81.5% of sensitivity, 97.8% specificity, 95.6% positive predictive value, 90% negative predictive value, and 91.8% accuracy in differentiating between benign and malignant breast masses.

![Figure 1](image.png)

Figure 1. The age range of 73 patients having presumed breast masses of breast clinic of Mo’tazed Hospital of Kermanshah University of Medical Sciences in 2008.

<table>
<thead>
<tr>
<th>Mass Type</th>
<th>Yes (Number)</th>
<th>No (Number)</th>
<th>Total of samples (Number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>History of Breast Feeding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>34 (68)</td>
<td>16 (32)</td>
<td>50 (100)</td>
</tr>
<tr>
<td>Malignant</td>
<td>21 (42)</td>
<td>2 (4)</td>
<td>23 (46)</td>
</tr>
<tr>
<td>Total</td>
<td>55 (106)</td>
<td>18 (36)</td>
<td>73 (142)</td>
</tr>
</tbody>
</table>

Table 1. Distribution of breast masses types by sonography based on history of breast-feeding of the studied patients in Breast Clinic of the Center Training and Treatment of Mo’tazed Hospital Kermanshah University of Medical Sciences during the year 2008.

The mean age of the patients was 41 years (range: 16-65 years), the majority of them were between 35 to 50 years old (Fig. 1). In addition, 79.5% of patients were married and 75.3% of them had a history of breast-feeding. The mean number of their children was 3.
Discussion

The results of this study showed that sonography has 81.5% sensitivity and 97.8% characteristic in differentiating between benign and malignant breast masses. The findings of other scientists also confirm our results (Guila in,12), while Nyström and colleagues believed that mammography is still more suitable than sonography in this regard.6,11 Sonography can have a proper position in imaging techniques of breast masses, because of having some advantages such as; simplicity, admission on part of the patients, cost-effective, and its potential in differentiating benign from malignant masses, and because of not using ionization rays. However biopsy is the gold standard for the assessment of breast masses, it is an invasive method and not acceptable for patients. Furthermore, performing biopsy and its resultant scars leads to confusion in the follow-up procedures. The results of the studies like this in other countries are not consistent with the carried out studies in Iran. This disagreement may be due to the type of methods of study, experience of sonographist and the applied instruments. According to previous experiments, sonography is used as a complementary method for mammography, and, if necessary, using of sonography after mammography is suggested.11 But the present study showed that sonography has also a proper precision in differentiating benign from malignant masses and can be used as the initial method for breast cancer diagnosis.

In general, the findings of this study illustrate that sonography has high sensitivity and characteristic in differentiating between benign and malignant breast masses. Thus, it seems that sonography can be utilized as the first step in testing breast masses. In order to obtain sufficient data, if needed, more studies with further samples should be carrying out in this regard.

Acknowledgment

We are thankful to all of the colleagues and patients who made this study possible. We are also very grateful to Pars Lab personnel for their much contribution.

References

