on the right side of the neck with associated palpable lymph nodes in the right cervical chain. Her laboratory investigations showed increased ESR.

An ultrasound of neck swelling was requested which revealed multiple enlarged lymph nodes in the neck along the cervical chain on the right side. Largest confluent one measured 1.6 x 1.5 cm. An ill-defined hypoechoic area measuring 2.0 x 1.5 x 1.1cm was seen in the right side of the neck showing moving echoes within it. The volume was approximately 2 ml. On the basis of ultrasound findings a diagnosis of cervical lymphadenopathy with small abscess/collection probably due to rupture of infective nodes was suggested. Ultrasound guided aspiration of this abscess was performed and sent for laboratory evaluation which showed presence of acid fast bacilli confirming diagnosis of tuberculosis.

Subsequently an MRI of neck was performed to rule out tuberculous ostemyelitis in the cervical spine. In MRI neck there was no evidence of discitis or osteomyelitis in the cervical spine, however, incidental note was made of a small cystic structure in the left neural foramen at C6-C7 level communicating with and closely related to the facet joint. It appeared homogenously isointense to the CSF on T1 and T2 weighted images and there was no enhancement (Fig 1 & 2). Minimal degenerative changes were seen in the facet joint. Since the cyst was asymptomatic and an incidental finding, no surgical intervention was done for this cyst.

Patient was planned to be started on anti tuberculous therapy on her follow up visit which had not occurred till the writing of this report.
typically unilateral, often asymptomatic and incidentally seen on imaging, but occasionally they may cause radicular compression giving rise to pain and radiculopathy. Symptoms may be precipitated by trauma or an acute episode of hemorrhage in the cyst. The mechanism of cyst formation is not well understood. Synovial cysts are usually believed to develop as a result of degenerative disease of joints and represent herniations of the joint synovium, however a communication with the joint may not be demonstrated on imaging. On the other hand ganglion cysts are believed to form from mucinous degeneration within periarticular dense fibrous connective tissue.

MR imaging due its multiplanar capabilities and excellent contrast resolution offers definite soft tissue characterization and demonstrates cystic nature of these lesions. It may also demonstrate accompanying degenerative changes in facet joints. The classic appearance is of a cystic lesion having signal intensity similar to CSF. Occasionally there may be hemorrhage or calcifications in the cysts giving a inhomogeneous signal. Synovial cysts and ganglion cysts have a similar appearance on imaging but can be differentiated on basis of histopathology.

Asymptomatic patients are best managed conservatively. Rarely some of the symptomatic patients may also report improvement of symptoms without any treatment. Laminectomy and surgical excision of the cyst is considered in symptomatic patients but before undertaking invasive surgical procedures it is important both for the surgeons and radiologists to be familiar with the radiological appearance of these cysts and to exclude other differential diagnosis like Tarlov’s perineural cysts, extradural arachnoid cyst and neuromas with cystic changes. Diagnostic features which can help differentiate foraminal or extrarotaminal cystic neuromas from juxtafacet cysts include typical dumbbell shaped configuration of the mass and avid post contrast enhancement of solid component in the neuromas.

Discussion

The term juxtafacet cyst encompasses intraspinal extradural cystic lesions that have an anatomic relationship to the facet synovial joint. The cysts are

Conclusion

Juxtafacet cysts are rare lesions of the cervical spine. Our report emphasizes on radiological findings of this uncommon but important entity to avoid diagnostic confusion and management dilemma.
References

