SAFETY CONCERNS RELATED TO ULTRA HIGH FIELD MAGNETIC RESONANCE IMAGING

Faisal Akram,¹ Salman Akram,² Neehal Wali¹

¹ Department of Psychiatry, Mayo Hospital, Lahore, Pakistan
² Rawalpindi Medical College, Rawalpindi, Pakistan

ABSTRACT

Over the past three decades, magnetic resonance imaging (MRI) technology has seen tremendous improvements. Ultra high field imaging systems are now increasingly being used in clinical practice as they provide higher resolution and image contrast. However, evaluation of safety risks of MR systems for human exposure at such high fields should be the first priority to demonstrate their long term feasibility. This article reviews potential safety issues for patients, research volunteers and technicians present in the ultra-high field strength MR systems.

Keywords: Magnetic Resonance Imaging; MRI Safety; Ultra High Field Strength Imaging

Abbreviations: FDA: Food and Drug Administration; MRI: Magnetic Resonance Imaging; SAR: Specific Absorption Rates

Introduction

Magnetic resonance (MR) imaging has established itself both as a diagnostic as well as a research tool of choice in many areas of health sciences because of its ability to provide excellent image quality and speed of imaging. Improving the same two factors i.e. image resolution and temporality, has been the main focus of studies and techniques aimed to bring in new advancements in MR imaging systems. As a result, several modalities of MR imaging system e.g. gradients, and pulse sequences, have been manipulated to achieve several modes and sequences like diffusion weighted imaging, diffusion tensor imaging,¹ MR spectroscopy,² and dynamic contrast imaging. Moreover, increasing the magnetic field strength is also of great value as it increases the signal to noise ratio (SNR) and contrast to noise ratio (CNR) especially helpful for techniques like MR spectroscopy and functional MRI. However, ultra high field MR systems (≥7T) have their own safety concerns, which need to be addressed in order to implement these MR systems in research and clinical fields. This article will review potential safety issues as reported by previous studies and will discuss guidelines related to these safety issues.

Organizations providing guidelines for safe MRI practices:

In view of emerging applications of MRI techniques, several organizations have established guidelines regarding different aspects of patient safety undergoing MR imaging. These include Food and Drug Administration (FDA) guidelines,³ which sets limiting criteria for several parameters like main static field, specific absorption rate (SAR), gradient fields rate of change and sound pressure level and International Electrotechnical Commission (IEC), which has esta-
It is responsible for the force and torque on human body at the nuclear level. This force, however, is also applicable to implanted devices and metallic objects. Increased field strengths exert more force on these objects which can be greater than 100,000 times the force of gravity. These implants and metallic objects can be dislodged, lifted, rotated or disrupted. Moreover, RF wavelengths at 7T become shorter and are more prone to resonate with those of metallic objects causing energy exchange and heating. Current FDA guidelines consider main static field strengths less than 8T to be non-significant risk in adults, while field strengths greater than 8T need investigational device exemption (IDE). A recent study showed that deflection angles of metallic dental implants were significantly larger at 7T than at 3T MR system. Temperature increases were also significant but still less than 1°C in this study. Therefore meticulous safety precautions should be taken prior to ultra-high field MR imaging, searching for all implanted devices or other objects like surgical clips, arterial lines, stents, needles, dental prostheses, body piercings and rings, regardless of their size.

Apart from the studies identifying effects of force created by static magnetic field on human body and metallic objects (devices and implants), several studies have also been done to evaluate structural, physiological and pathological effects of Ultra high field MRI system on human body. One study showed that vital sign parameters (Diastolic blood pressure, heart rate, respiratory rate, body temperature and pulse oxygenation levels) did not change significantly during MRI imaging, searching for all implanted devices or other objects like surgical clips, arterial lines, stents, needles, dental prostheses, body piercings and rings, regardless of their size.

Increased field strengths further show that the design of MR imaging machine itself.

Safety concerns related to static magnetic field (B0):
Static Magnetic field (B0) is probably the most important magnetic field regarding safety issues as it is responsible for the force and torque on human body at the nuclear level. This force, however, is also applicable to implanted devices and metallic objects.
precautions should be taken for individuals after 7 T MR imaging. Other sensory modalities impaired in MR imaging are subjective sensation of metallic taste, nausea and light flashes,15,16 all of which are also believed to be the result of static magnetic field induced currents. These currents are produced due to body movements e.g. head movements within the bore of MRI machine especially at high gradient fields, gradient field velocity. Therefore, body movements should be minimized while MRI imaging especially at high field strengths which can further lower the side effects related to induced currents.

Effects of static magnetic field on special sensory system, cognition and behavior have also been studied12,17,18 and results show no significant effects on cognition although eye hand coordination and visual contrast sensitivity show slight impairment. These results are also supported by a 2013 study17 by Heinrich et al, who took a larger sample size with adequate matching and standardization, showing insignificant effects of static magnetic field at different field strengths even for eye hand coordination and visual contrast sensitivity. Hence, we can conclude that MRI imaging at 7 T appears to have no effect on cognition and behavior.

Safety Concerns related to gradient field:
Unlike static magnetic field, gradient field strength remains the same in ultra-high field strength imaging, so the side effects of gradient field strength in 7 T MRI systems should also be the same as in low field strength systems i.e. peripheral nerve stimulation and acoustic noise production. Peripheral nerve stimulation depends upon the rate of change of gradient fields (dB/dt levels),19 however Theyson et al (2008)12 reported significantly increased frequency of twitching (a physical sign of peripheral nerve stimulation) at 7 T MRI. But, this could also be attributed to paresthesia caused by peripheral nerve compression. Initial dB/dt limit proposed by MRDD (Magnetic resonance diagnostic devices) guidance was 20T/sec for pulse duration over 120 microseconds30 which was relaxed owing to clinical potential of MRI at dB/dt levels greater than 20T/sec. Now, MRDD guidance recommends volunteer studies for stimulation thresholds at different pulse durations and axes to limit dB/dt levels at 80% level of stimulation threshold in normal mode and at 100% level of stimulation threshold in first level control mode. Theyson et al (2008) also proposed that the dB/dt limit could be increased to 120% level of stimulation threshold as peripheral nerve stimulation was still 2.9% which was less than the 5% limit set by FDA/IEC.29

Acoustic noise, another safety issue caused by gradient magnetic field, is produced through interaction of gradient and static magnetic fields causing vibrations of gradient coils governed by Lorentz forces. This noise can reach the levels of 126dB/decade may cause multiple side effects from anxiety to partial hearing loss.20 Therefore, effective noise reduction procedures are required at ultra-high field strength imaging as noise level increases with increase in strength of static magnetic field. Several studies have shown that both passive and active noise control procedures can reduce sound levels.21,22 Furthermore, development of quiet MRI sequences by optimizing standard clinical turbo spin echo (TSE) and gradient echo (GRE) sequences can further reduce the noise level.23

Safety Concerns Related to Radiofrequency Field:
Radiofrequency field is another aspect of MRI system which has known safety issues, most important being radiofrequency (RF) induced heating.24 Radiofrequency coils transmit high energy waves to nuclei for spin flip, but a lot of energy is also dissipated in the form of heat due to resistive nature of body tissues. Ultra high field strength imaging e.g. 7 T systems are particularly more hazardous because the incident wavelengths are shorter and more prone to resonate which can result in maximal energy transfer and subsequently heat generation leading to an increase in core body temperature. A major limitation of 7 T MRI system, rotating magnetic field (B1) inhomogeneities, is also related to heating as it creates inhomogeneous distribution of signal and SAR (specific absorption rate) intensities, which results in localized temperature increases, so called ‘hot spots’. Unlike, core body temperature increase, hot spots may be anywhere in the body and may be more difficult to localize and cool down. Luckily, the heating effect of RF field occurs more at the surface, which is easier to dissipate and thermoregulatory mechanisms are likely to further mitigate the RF induced temperature changes. Nevertheless, specific absorption rates (SAR) should be calculated and brought within FDA/
IC guidelines, which limits SAR according to the body part being examined i.e. 4 W/kg whole body for 15 minutes, 3W/kg averaged over the head for 10 minutes, 8 W/kg in any gram of tissue in the head or torso for 15 minutes, or 12 W/kg in any gram of tissue in the extremities for 15 minutes. Kangarlu et al (2003) measured radiofrequency induced temperature increases in a head phantom and confirmed the theoretical field inhomogeneities leading to hot spots as well as rise in core temperature, however, the temperature increases observed were all within FDA limits. Some pulse sequences e.g. fast spin echo and magnetization transfer contrast may achieve SARs beyond the limits proposed by FDA/IEC guidelines. This issue has led to several other studies aimed at reducing the parameters like repetition time, TR, and number of slices, and developing new pulse sequences which operate at SARs within FDA/IEC limits. Variable rate selective RF pulse sequences were designed to achieve peak RF power control which were further optimized for parameters like time and acoustic noise. To reduce the local field inhomogeneities and SAR, Zelinski et al (2009) suggested the use of parallel transmission of RF pulses for inner volume excitation and suggested model based evaluation of the individual target patterns. However, designing parallel transmission RF sequences requires control over transmitter power and SAR, which was achieved by Guerin et al (2014) who proposed a design algorithm allowing the design of small flip-angle pTx spoke pulses with explicit control for local SAR, global SAR, maximum and average power on each channel. Other techniques for parallel transmission of RF pulses at low peak RF power have also been developed but their clinical applicability along with safety benefit is yet to be studied.

Conclusion

Ultra high field imaging is an emerging technique in diagnostic/interventional radiology with wide clinical applications and adequate safety profile. Nevertheless, all safety measures should be taken to ensure safety of patients and research volunteers. Safety guidelines by relevant organizations (FDA/IEC) should be used as a standard and strictly followed. At present, it appears that there are no unique safety concerns at ultra-high fields (7T systems) when compared to low field systems like 1.5 T and 3T but common side effects can be more severe at high fields e.g. force on metallic objects, acoustic noise production, and radiofrequency induced heating. These should be handled by practicing more effective measures at ultra-high field strengths e.g. strict evaluations to search for contraindications to MRI (implants etc.), use of effective anti-noise apparatus, and utilizing RF power/SAR controlled pulse sequences. Finally, studies should be done for better evaluation of MRI safety and its emerging techniques. Newer techniques e.g. parallel transmission designs should be developed and optimized to make MR imaging a safer, faster and a reliable tool for healthcare.

Conflict of Interest:
Authors declare that no conflict of interest exists in writing of this article.

References

22. McJury M, Stewart R, Crawford D, Toma E. The use of active noise control (ANC) to reduce acous-

