COMPARISON OF 99mTc(V)-DMSA WITH 99mTc-EDDA/HYNIC-Tyr3-OCTREOTIDE SCINTIGRAPHY IN THE DETECTION OF MEDULLARY THYROID TUMOR FOCI IN A PATIENT WITH ELEVATED LEVEL OF CALCITONIN AFTER SURGERY: A CASE REPORT

ORIGINAL ARTICLE

Abstract

Technetium-99m Pentavalent Dimecaptosuccinic acid (99mTc(V)-DMSA) scintigraphy was performed in a patient with histopathologically proven medullary thyroid carcinoma having high level of calcitonin using a locally formulated kit. Marked uptake of the radiotracer was observed by the locally metastatic foci. The same patient was then subjected to somatostatin receptor scintigraphy (OctreoScan) and the results were found comparable. Both the scanning was completed within 24 hrs with good quality images. In house preparation from renal DMSA kit, better resolution, good stability and easy procedure with minimum cost make 99mTc(V)-DMSA, a good imaging agent for visualization of medullary thyroid carcinoma in centre’s where 99mTc-EDDA/HYNIC-Tyr3-Octreotide is not available.

Key words: Octreotide, MTC, Calcitonin, 99mTc (V)-DMSA, Radiocchemical purity

Introduction

Medullary Thyroid Carcinoma (MTC) is an uncommon but challenging malignant tumor that arises from the parafollicular calcitonin secreting cells of the thyroid.\(^1,2\) Hence elevated serum calcitonin level is a reliable marker for differentiate recurrent MTC.\(^3\) MTC accounts for 3% - 10% of all thyroid cancers and 13.4% of all thyroid-related deaths.\(^4\) According to the oncology registry record of the Institute of Radiotherapy and Nuclear Medicine (IRNUM), there are 59 cases of MTC in the last 10 years which comprises about 0.09% of all malignant cases registered in the hospital. In time diagnosis, staging and assessment of recurrence in medullary thyroid carcinoma (MTC) is of utmost importance for the proper management of the disease.\(^5\) This tumour is resistant to external beam radiotherapy (EBRT) and show poor response to chemotherapy. Hence, surgery is the only strategy for potential treatment.\(^2,6-8\) However for successful surgical attempt, one should be familiar with site and extent of disease.\(^9\) The conventional imaging techniques sometimes show negative results or have some limitations to be applied.\(^10\) Therefore nuclear medicine techniques are sought to image, detect or visualize MTC.

The various functional imaging tools commonly used for this purpose are: iodinated (123I) or (131I) metaiodobenzylguanidine (MIBG), Thallium chloride, (201TI), pentavalent 99mTc dimercaptosuccinic acid (99mTc(V)-DMSA), 111In and 99mTc labeled octreotide, 18F-FDG PET, monoclonal anti-CEA labeled antibodies, and other PET tracers, such as 18F-DOPA and 68Ga-DOTATOC or 68Ga-DOTATATE, have shown encouraging results.\(^11-13\)
The selection of radiopharmaceuticals depends upon the availability, financial implications and ultimately the comfort of the treating clinician. Out of them \(\text{99mTc} \) labeled octreotide (\(\text{99mTc-EDDA/HYNIC-Tyr}^3 \)). Octreotide scintigraphy is now considered as the most appropriate method for the diagnosis, staging and assessment of treatment response in MTC especially in lesions that express with somatostatin receptors. It has many advantages including fast clearance, easy labeling, rapid tissue penetration and lesser time to scan the patient. In our clinical set up where patients flow is limited and clinical indications are few, the tracer is not always readily available at many institutes and its price also makes it unaffordable by many patients which might delay the imaging procedures. Alternatively \(\text{99mTc} \)\(\text{(V)} \)-DMSA has a crucial role in the preoperative evaluation, assessment of residual disease or recurrence of MTC and other related soft tissue tumors. However several authors still believe that \(\text{99mTc} \)\(\text{(V)} \)-DMSA is the most cost effective and time efficient tool for imaging MTC. Previously published work from our institute also suggest \(\text{99mTc} \)\(\text{(V)} \)-DMSA, a good tumour seeking agent for visualization of MTC and its involved lymph nodes in the mediastinum. As \(\text{99mTc} \)\(\text{(V)} \)-DMSA can be easily formulated from the renal DMSA kit and has comparable results with \(\text{99mTc-EDDA/HYNIC-Tyr}^3 \)-Octreotide (Tektrotyd), we successfully imaged a patient of MTC with locally formulated \(\text{99mTc} \)\(\text{(V)} \)-DMSA and then made its comparison with the results of \(\text{99mTc-EDDA/HYNIC-Tyr}^3 \)-Octreotide (Tektrotyd) scintigraphy for lesion detection sensitivities.

Case Report

A 35 years old male was diagnosed one year ago as a case of MTC after excision biopsy from neck swelling, was referred to nuclear medicine department from oncology section for somatostatin receptor scintigraphy. At the time of presentation, his serum calcitonin level was 6324 pg/mL (normal range is <8.4). However due to nonavailability of this radiopharmaceutical, it was decided to perform \(\text{99mTc} \)\(\text{(V)} \)-DMSA scan for this patient. Owing to our previous experience, the radio—

**Figure 1(a): \(\text{99mTc} \)\(\text{(V)} \)-DMSA scan 1-hour.
After one month of the 99mTc(V)-DMSA scan, the same patient underwent with 99mTc-EDDA/HYNIC-Tyr3-Octreotide scintigraphy. The cold kit with brand name, Tektrotyd, was obtained from PARS, Isotope Company, Iran. The kit was reconstituted with 30 mCi (1110 MBq) of 99mTc and the labeling yield was found 98.2 ± 0.2%. Then 20 mCi (740 MBq) of the radiopharmaceutical was also slowly injected into the median cubital vein, having a close look at the vital signs. After 2-3 hrs (Fig. 2a) and 4 hrs (Fig. 2b) post injection, whole body imaging was performed on the same institutional protocols.

All the images were compared and interpreted by the nuclear physician in view of the clinical presentation of the patient. The images were very sharp with excellent resolution and the lesion detection potentials were common in both the cases. Marked uptake of both the radiotracer was seen in four foci of the neck thoracic region and showed good radiotracers avidly by the lesions. The number of lesions detected by the 99mTc(V)-DMSA on the initial scan in the neck

Figure 1(b): 99mTc(V)-DMSA scan 1-hour images of the anterior head and neck region images of the anterior thoracic region.

Figure 1(c): 99mTc(V)-DMSA scan 24 hours images of the anterior chest region.

Figure: 2-hours 2(a) and 4 hours 2(b) whole body imaging of 99mTc-EDDA/HYNIC-Tyr3-Octreotide scan.
and thorax region were found to be the same as detected later by 99mTc-EDDA/HYNIC-Tyr3-Octreotide scintigraphy. No additional focus was detected by the Octreoscan. The 24 h post injections images were additionally acquired to see the redistribution of the tracers over a long period of time.

Discussion

MTC is a rare neuroendocrine tumor and octreotide scan is considered as a specific imaging agent for detection of primary and metastatic MTC with higher sensitivity. Somatostatin receptor scintigraphy is used to detect the primary tumor focus for staging, decision of therapy protocol, and evaluation of therapy response in neuroendocrine tumors and other related cancers. It has proved to be better than other diagnostic tools in the detection of cervical and mediastinal lymph node metastases in MTC or other somatostatin receptor-positive tumors. Several study support that the sensitivity and specificity of Octreoscan is higher than that of 99mTc (V)-DMSA in the work up of MTC. However limitations are associated with this radiotracer like availability and high prices. In most developing and under developed countries, it is imported from other developed countries and patients have to wait for a prolong duration. Patient’s affordability is another major hurdle in its routine use. In such conditions 99mTc DMSA (V) scanning is an affordable and a reasonably sensitive imaging agent for localization of recurrent or metastatic disease. 99mTc DMSA (V) is a non specific multifunctional imaging agent that commonly accumulates in MTC. Its role in the evaluation of MTC has already been compared with other functional imaging tools like 123I-MIBG, 99mTc tetrofosmin and 201TI scintigraphy etc. 99mTc DMSA (V) plays a crucial role in the assessment of residual tumor or metastatic disease in patients with medullary thyroid cancer especially with high postoperative calcitonin levels. The ease of preparation of 99mTc DMSA (V) and good imaging characteristics of the radiopharmaceutical make it an alternative imaging tool in patients having proven MCT. MTC is an uncommon NET and patients are neither readily available nor always compliant for the tedious procedures of research. Hence further studies are needed to better define the role of 99mTc DMSA (V) in MTC patients. Our experience of avid and persistent 99mTc DMSA (V) uptake in all the tumor deposits in the thoracic region have encouraged us to explore its potentials where EDDA/HYNIC-Tyr3-Octreotide and 68Ga-DOTATOC or 68Ga-DOTATATE is not available. Moreover, 99mTc DMSA (V) show low uptake in the liver and spleen as compared to Octreoscan, hence the uptake in these region will be clearly appreciated where it will be overshadow with octreotide. The prolong residence of the of 99mTc DMSA (V) can also be utilized for an alternate therapeutic option when tagged with β emitting radionuclides like 188Re, 186Re and others.

Conclusion

Locally formulated 99mTc DMSA (V) scintigraphy is an easy, economical and promising imaging modality in MTC patients with high levels of calcitonin. In comparison with 99mTc-EDDA/HYNIC-Tyr3-octreotide scintigraphy, its availability and application is easier. It can be used as an alternative imaging method when 99mTc-EDDA/HYNIC-Tyr3-octreotide and 68Ga-DOTATOC or 68Ga-DOTATATE is not available.

References

tide scintigraphy in local recurrent or metastatic medullary thyroid cancers: a comparison of lesions with 18F-FDG-PET and MIBI images. Nucl Med Commun. 2013 Dec; 34(12): 1190-5.

