TRIGEMINAL NEURALGIA SECONDARY TO VERTEBROBASILAR DOLICHOECTASIA IN AN OLD MALE AND ITS MANAGEMENT BY MICROVASCULAR DECOMPRESSION

Amna Alvi,1 Asma Alvi,2 Salma Azam1

1 Department of Radiology, The Aga Khan University Hospital (AKUH), Karachi, Pakistan.
2 Department of Radiology, King Edward Medical University, Lahore, Pakistan.

ABSTRACT

Trigeminal neuralgia (TN) is a severe paroxysmal pain disorder in the territory of one or more of trigeminal nerve branches. Etiology is not very well known, neurovascular conflict is found to be the most common cause in most studies. Vertebrobasilar dolichoectasia (VBDE) is a rare but treatable cause of TN and we found this in our 57 years old male patient. Brain MRI is a key to its definitive diagnosis and it should be interpreted by expert neuroradiologist. In patients resistant to medical therapy, microsurgical decompression is an effective therapeutic option.

Key words: Trigeminal neuralgia, vertebrobasilar, microvascular decompression surgery.

Clinical History

A 57 year old male, known hypertensive and diabetic, presented in neurosurgery clinic with the complains of left sided facial pain for the last 3 years.

Imaging Findings

Ectatic and tortuous vertebrobasilar circulation with basilar arterial diameter of 6.3 mm representing dolichoectasia (Fig. 1). Cisternal segment of left trigeminal nerve appears to be compressed and displaced by tortuous and ectatic basilar artery (Fig. 2). The ectatic basilar is also indenting the brain stem however no abnormal parenchymal signals. Imaging findings represent vertebrobasilar dolichoectasia resulting in compression and displacement of the left trigeminal nerve cisternal segment (Fig. 3).

Figure 1a: CT brain with contrast Axial section. Dilated tortuous vertebrobasilar system.
**Figure 1b:** CT brain with contrast Reformatted 3D. Dilated tortuous vertebrobasilar system.

**Figure 2a:** MRI brain-CISS image. CISS Axial image. White arrow indicating right trigeminal nerve. Gray arrow indicating left trigeminal nerve, being compressed by adjacent VBDE.

**Figure 2b:** MRI brain-CISS image. CISS Axial image. White arrow indicating right trigeminal nerve. Gray arrow indicating left trigeminal nerve, being compressed by adjacent VBDE.

**Figure 2c:** MRI brain-CISS image. CISS Axial and sagittal images. Blue arrow indicating left trigeminal nerve.

**Figure 2d:** MRI brain-CISS image. CISS Sagittal image. Gray arrow indicating left trigeminal nerve. White arrow shows VBDE.

**Figure 3a:** Post contrast TIW I Axial section showing VBDE.
Background

Trigeminal neuralgia (TN) is a severe paroxysmal pain disorder characterized by attacks in the territory of one or more of trigeminal nerve branches. Annual incidence is 5 per 100,000 people. Etiology is not very well known. Some studies suggest that more than 80% of cases are the result of neurovascular conflict, in 75% by superior cerebellar artery, in 10% by anterior inferior cerebellar artery and in 7% by venous compression. Vertebrobasilar artery dolichoectasia (VBDE) is rare, causing only 2 to 2.4% of cases. A dolichoectatic artery is defined by a diameter >4.5 mm at any location along its course. Prolonged vascular compression leads to demyelination and axonopathy, resulting in hyperexcitability that can lead to pain paroxysms.

Clinical Perspective

Usually affect middle or old age. TN by VBDE is commonly left sided because of dominant left vertebral artery, more common in hypertensive old males. Patient presents with attacks of electric shock-like facial pain, occurring spontaneously or triggered by mild tactile stimuli. In majority pain is unilateral involving 2nd or 3rd division of nerve. Unlike other painful neuropathies, TN patients are often pain-free between attacks. With disease progression attacks become more frequent.

Imaging Perspective

Catheter angiography is gold standard, but due to associated risks of invasiveness, noninvasive modalities like CT, MRI have emerged with high adequacy. Brain MRI with 3D - CISS, 3D - TOF or angio-MRI (contrast-enhanced T1-weighted MRI) is usually the modality of choice. MRI sensitivity for diagnosing VBDE is 97% and specificity is 100%.

Treatment

First-line is medical with carbamazepine. When it fails or patient develops side effects, then surgery is considered. Various surgical options include trigeminal nerve block, retrogasserian injection of glycerol, balloon compression or radiofrequency destruction of gasserian ganglion, microvascular decompression of trigeminal root. Microvascular decompression is gold-standard. There can be sensory loss or recurrence after surgery. In our patient initially attempt was made for left trigeminal balloon gangliolysis under fluoroscopic guidance but due to venous bleeding procedure was abandoned. He presented again with aggravated symptoms after 2 years and this time left retrosigmoid craniotomy and decompression of trigeminal nerve (teflon placement) was done.

OUTCOME:
Symptoms resolved completely. No post op complication.

FINAL DIAGNOSIS:
Vertebrobasilar dolichoectasia compressing and displacing left trigeminal nerve.

DIFFERENTIAL DIAGNOSIS:
• Arteriovenous malformation (AVM)
• Vertebrobasilar aneurysm
References


