THE EVALUATION OF THE PARAMETERS AFFECTING ADC VALUES OF EXTRAOCULAR MUSCLES WITH ECHOPLANAR DIFFUSION-WEIGHTED IMAGING BY 3 TESLA MRI

Emrah Dogan, Ferda Bacaksızlar Sarı

Abstract


Abstract:

Objective – The study aims to determine the parameters affecting Apparent diffusion coefficient (ADC) values of extraocular muscles (EOM).

Methods – This retrospective descriptive study was conducted with clinically normal 300 patients [150 females, 150 males; mean age, 42,93 ± 19,19 - range 18-96 years-old]. MRI had performed by applying 0-1000 s/mm2 b value and EPI technique. ADC values were evaluated from medial and lateral rectus muscles and classified according to four main parameters [Age, side (right/Left), gender and muscle type].

Results –

Age: ADC values of EOM statistically increased with age (p:<0,05) at the rate of reaching a maximum of 0.413 10−3 mm2 / s. The difference in ADC values was approximately 40% from 18 years old to the maximum age.Side, gender, muscle type: Graphically and numerically, ADC values of males were higher than females in the right eye. This situation was statistically more significant in the 18-30 age group (p: 0,047 for right medial rectus, p: 0,01 for right lateral rectus). There was no significant difference between the right and left eyes in the total population. Although the presence a divergence in the ADC values between females and males in the right eye, the dominant and recessive eyes' values were similar (p> 0,05).Conclusion- It is not possible to make mention an absolute normal ADC value for EOM. The ADC values vary according to age and gender. Age is the main parameter which affects ADC values. Gender is effective on values in the early age group and right eye [mainly dominant eye in the total population]. The side of EOM and muscle type are not parameters that significantly affect the ADC values.

Full Text:

PDF

References


Politi LS, Godi C, Cammarata G, et al. Magnetic resonance imaging with diffusion-weighted imaging in the evaluation of thyroid-associated orbitopathy: getting below the tip of the iceberg. Eur Radiol. 2014; 24(5):1118-1126. doi: 10.1007/s00330-014-3103-3. Epub 2014 Feb 12. PMID: 24519110. URL: https://pubmed.ncbi.nlm.nih.gov/24519110/

Li S, Shi S, Li A, Liu H, Cai L. Diffusion-Weighted Magnetic Resonance Imaging in Assessment of Primary Liver Cancer after HIFU Treatment. J Coll Physicians Surg Pak. 2019 ;29(4):305-308. doi: 10.29271/jcpsp.2019.04.305. PMID: 30925949. URL: https://pubmed.ncbi.nlm.nih.gov/30925949/

Hemat EM. Characterization of orbital masses by diffusion-weighted Magnetic Resonance Imaging (DWI) and Apparent Diffusion Coefficient (ADC) value. The Egyptian Journal of Radiology and Nuclear Medicine. 2017; 48(1): 115-123. https://doi.org/10.1016/j.ejrnm.2016.10.003 URL: https://www.sciencedirect.com/science/article/pii/S0378603X16301917

Yildiz S, Aralasmak A, Yetis H, et al. MRI findings and utility of DWI in the evaluation of solid parathyroid lesions. Radiol Med. 2019 May;124(5):360-367. doi: 10.1007/s11547-018-0970-8. Epub 2019 Jan 3. PMID: 30607865 URL: https://pubmed.ncbi.nlm.nih.gov/30607865/

Ren J, Yuan Y, Wu Y, Tao X. Differentiation of orbital lymphoma and idiopathic orbital inflammatory pseudotumor: combined diagnostic value of conventional MRI and histogram analysis of ADC maps. BMC Med Imaging. 2018; 18(1):6. doi: 10.1186/s12880-018-0246-8. PMID: 29716527; PMCID: PMC5930683. URL: https://pubmed.ncbi.nlm.nih.gov/29716527/

Razek AA, El-Hadidy EM, Moawad ME, El-Metwaly N, El-Said AAE. Assessment of lacrimal glands in thyroid eye disease with diffusion-weighted magnetic resonance imaging. Pol J Radiol. 2019; 84:142-146. doi: 10.5114/pjr.2019.84096. PMID: 31019608; PMCID: PMC6479144. URL: https://pubmed.ncbi.nlm.nih.gov/31019608/

Zhuang Y, Wang T, Zhang G. Diffusion-Weighted Magnetic Resonance Imaging (DWI) Parameters in Benign and Malignant Ovarian Tumors with Solid and Cystic Components. J Coll Physicians Surg Pak. 2019; 29(2):105-108. doi: 10.29271/jcpsp.2019.02.105. PMID: 30700345. https://pubmed.ncbi.nlm.nih.gov/30700345/

Kapur R, Sepahdari AR, Mafee MF, et al. MR imaging of orbital inflammatory syndrome, orbital cellulitis, and orbital lymphoid lesions: the role of diffusion-weighted imaging. AJNR Am J Neuroradiol. 2009; 30(1):64-70. doi: 10.3174/ajnr.A1315. Epub 2008 Oct 8. PMID: 18842758; PMCID: PMC3690287. https://pubmed.ncbi.nlm.nih.gov/18842758/

Kilicarslan R, Alkan A, Ilhan MM, Yetis H, Aralasmak A, Tasan E. Graves' ophthalmopathy: the role of diffusion-weighted imaging in detecting involvement of extraocular muscles in early period of disease. Br J Radiol. 2015; 88(1047):20140677. doi: 10.1259/bjr.20140677. Epub 2014 Dec 19. PMID: 25525866; PMCID: PMC5481836. https://pubmed.ncbi.nlm.nih.gov/25525866/

Hiwatashi A, Togao O, Yamashita K, Kikuchi K, Momosaka D, Honda H. Diffusion-weighted magnetic resonance imaging of extraocular muscles in patients with Grave's ophthalmopathy using turbo field echo with diffusion-sensitized driven-equilibrium preparation. Diagn Interv Imaging. 2018; 99(7-8):457-463. doi: 10.1016/j.diii.2018.02.007. Epub 2018 Mar 21. PMID: 29571699. https://pubmed.ncbi.nlm.nih.gov/29571699/

Estronza S, Saavedra FM, De Jesus O, Pastrana EA. Chordoid Glioma with Psychosis: Case Report. P R Health Sci J. 2018; 37(3):174-176. PMID: 30188563. https://pubmed.ncbi.nlm.nih.gov/30188563/

Gely-Rojas L, García-Fragoso L, Negrón J, Deynes D, García-García I, Zorrilla CD. Congenital Zika Syndrome in Puerto Rico, Beyond Microcephaly, A Multiorgan Approach. P R Health Sci J. 2018; 37(Spec Issue):S73-S76. PMID: 30576581. https://pubmed.ncbi.nlm.nih.gov/30576581/

Stikova E. Magnetic resonance imaging safety: principles and guidelines. Prilozi. 2012; 33(1):441-72. PMID: 23037190. https://pubmed.ncbi.nlm.nih.gov/23037190/

Harris AD, Pereira RS, Mitchell JR, Hill MD, Sevick RJ, Frayne R. A comparison of images generated from diffusion-weighted and diffusion-tensor imaging data in hyper-acute stroke. J Magn Reson Imaging. 2004; 20(2):193-200. doi: 10.1002/jmri.20116. PMID: 15269943. https://pubmed.ncbi.nlm.nih.gov/15269943/

De Foer B, Vercruysse JP, Pilet B, et al. Single-shot, turbo spin-echo, diffusion-weighted imaging versus spin-echo-planar, diffusion-weighted imaging in the detection of acquired middle ear cholesteatoma. AJNR Am J Neuroradiol. 2006; 27(7):1480-2. PMID: 16908562. https://pubmed.ncbi.nlm.nih.gov/16908562/

Abou khadrah RS, Imam HH. Multiple b values of diffusion-weighted magnetic resonance imaging in evaluation of solid head and neck masses. Egypt J Radiol Nucl Med. 2019; 50:54 https://doi.org/10.1186/s43055-019-0054-3 URL: https://ejrnm.springeropen.com/articles/10.1186/s43055-019-0054-3

Le Bihan D. What can we see with IVIM MRI? Neuroimage. 2019; 187:56-67. doi: 10.1016/j.neuroimage.2017.12.062. Epub 2017 Dec 22. PMID: 29277647. URL: https://www.sciencedirect.com/science/article/pii/S1053811917310868

Koh DM, Padhani AR. Diffusion-weighted MRI: a new functional clinical technique for tumour imaging. Br J Radiol. 2006; 79 (944): 633-635. doi:10.1259/bjr/29739265 - Pubmed citation URL: https://pubmed.ncbi.nlm.nih.gov/16793851/

Liu X, Su Y, Jiang M, Fang S, et al. Application of Magnetic Resonance Imaging in the Evaluation of Disease Activity in Graves' Ophthalmopathy. Endocr Pract. 2021; 27(3):198-205. doi: 10.1016/j.eprac.2020.09.008. Epub 2020 Dec 15. PMID: 33658136. URL: https://pubmed.ncbi.nlm.nih.gov/33658136/

Ronen I, Valette J. Diffusion-Weighted Magnetic Resonance Spectroscopy. eMagRes. 2015; 4: 733–750. DOI 10.1002/9780470034590. URL: https://pubmed.ncbi.nlm.nih.gov/29687927/

Atalay B, Ediz SS, Ozbay NO. Apparent Diffusion Coefficient in Predicting the Preoperative Grade of Meningiomas. J Coll Physicians Surg Pak. 2020; 30(11):1126-1132. doi: 10.29271/jcpsp.2020.11.1126. PMID: 33222726. URL: https://pubmed.ncbi.nlm.nih.gov/33222726/

Tang Y, Pan J, Wang H, Wang X, Li L, Ye H. Study of ADC value in healthy adults kidney of different age groups. Zhonghua Yi Xue Za Zhi. 2014; 8;94(13):1014-1016. Chinese. PMID: 24851691. URL: https://pubmed.ncbi.nlm.nih.gov/24851691/

Moradi B, Nezhad ZA, Saadat NS, Shirazi M, Borhani A, Kazemi MA. Apparent diffusion coefficient of different areas of brain in foetuses with intrauterine growth restriction. Pol J Radiol. 2020 ;85: 301-308. doi: 10.5114/pjr.2020.96950. PMID: 32685065; PMCID: PMC7361370. URL: https://pubmed.ncbi.nlm.nih.gov/32685065/

Kiani Nazarlou A, Faeghi F, Abdkarimi MH, Asghari JafarAbadi M. ADC values in diffusion-weighted MRI and their relationship with age, gender and BMI in healthy people's pancreases [published correction appears in Br J Radiol. 2015; 88(1048):20159002]. Br J Radiol. 2015;88(1047):20140449. doi:10.1259/bjr.20140449 25 URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4651197/

Jehangir N, Mahmood SM, Mannis T, Moshirfar M. Ocular dominance, coexistent retinal disease, and refractive errors in patients with cataract surgery. Curr Opin Ophthalmol. 2016; 27(1):38-44. doi: 10.1097/ICU.0000000000000215. PMID: 26632917. URL: https://pubmed.ncbi.nlm.nih.gov/26632917/

Moon Y, Kim JH, Lim HT. Difference in myopia progression between dominant and non-dominant eye in patients with intermittent exotropia. Graefes Arch Clin Exp Ophthalmol. 2020; 258(6):1327-1333. doi: 10.1007/s00417-020-04700-0. Epub 2020 Apr 19. PMID: 32307585. URL: https://pubmed.ncbi.nlm.nih.gov/32307585/

Helenius J, Soinne L, Perkiö J et-al. Diffusion-weighted MR imaging in normal human brains in various age groups. AJNR Am J Neuroradiol. 2002;23 (2): 194-199. AJNR Am J Neuroradiol (full text) - Pubmed citation URL: https://pubmed.ncbi.nlm.nih.gov/11847041/

Zacharzewska-Gondek A, Pokryszko-Dragan A, Budrewicz S, et al. The role of ADC values within the normal-appearing brain in the prognosis of multiple sclerosis activity during interferon-β therapy in the 3-year follow-up: a preliminary report. Sci Rep. 2020; 10, 12828. https://doi.org/10.1038/s41598-020-69383-3 URL: https://www.nature.com/articles/s41598-020-69383-3


Refbacks

  • There are currently no refbacks.


© Copyright PJR 2008-